Lab 4: Deploying MCP Servers to Production
In this advanced lab, you’ll learn how to deploy Docker MCP servers to a production environment with proper security, monitoring, and scaling considerations. You’ll set up a robust infrastructure that can be used in real-world enterprise settings.
Time to complete: 90 minutes
Prerequisites:
- Completion of previous MCP labs
- Intermediate Docker and Docker Compose knowledge
- Basic understanding of networking and security concepts
- A cloud account (AWS, GCP, or Azure) or a server for deployment
Learning Objectives
By the end of this lab, you’ll be able to:
- Set up secure MCP server deployments for production use
- Implement monitoring and logging for MCP servers
- Scale MCP servers to handle production loads
- Manage secrets and configuration securely
- Implement proper access controls for MCP servers
Step 1: Preparing Your Production Environment
Create a new directory for your production deployment:
mkdir mcp-production
cd mcp-production
Create a .env
file to store sensitive configuration (this should never be committed to a repository):
# API Keys and Secrets
GITHUB_TOKEN=your_github_token_here
DATABASE_PASSWORD=your_secure_db_password
# Configuration
MCP_LOG_LEVEL=info
MONITORING_ENABLED=true
Step 2: Creating a Secure Production Compose File
Create a docker-compose.yml
file with the following content:
services:
# MCP Servers
time:
image: mcp/time:latest
restart: unless-stopped
networks:
- mcp-internal
logging: &logging
driver: json-file
options:
max-size: "10m"
max-file: "3"
deploy:
resources:
limits:
cpus: '0.25'
memory: 256M
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8080/.well-known/mcp"]
interval: 30s
timeout: 10s
retries: 3
fetch:
image: mcp/fetch:latest
restart: unless-stopped
networks:
- mcp-internal
- mcp-external
logging: *logging
deploy:
resources:
limits:
cpus: '0.5'
memory: 512M
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8080/.well-known/mcp"]
interval: 30s
timeout: 10s
retries: 3
fs:
image: mcp/filesystem:latest
command:
- /rootfs
volumes:
- ./data:/rootfs/data:ro
- ./output:/rootfs/output:rw
restart: unless-stopped
networks:
- mcp-internal
logging: *logging
deploy:
resources:
limits:
cpus: '0.25'
memory: 256M
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8080/.well-known/mcp"]
interval: 30s
timeout: 10s
retries: 3
github:
image: mcp/github:latest
restart: unless-stopped
networks:
- mcp-internal
- mcp-external
environment:
- GITHUB_TOKEN=${GITHUB_TOKEN}
logging: *logging
deploy:
resources:
limits:
cpus: '0.5'
memory: 512M
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8080/.well-known/mcp"]
interval: 30s
timeout: 10s
retries: 3
# PostgreSQL MCP Server with separate database
postgres-mcp:
image: mcp/postgres:latest
command: postgresql://mcpuser:${DATABASE_PASSWORD}@postgres-db:5432/mcpdb
restart: unless-stopped
networks:
- mcp-internal
- db-network
depends_on:
- postgres-db
logging: *logging
deploy:
resources:
limits:
cpus: '0.5'
memory: 512M
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8080/.well-known/mcp"]
interval: 30s
timeout: 10s
retries: 3
# MCP Gateway - Single entry point for AI assistants
mcp-gateway:
image: nginx:alpine
ports:
- "8080:80"
volumes:
- ./nginx/nginx.conf:/etc/nginx/nginx.conf:ro
- ./nginx/conf.d:/etc/nginx/conf.d:ro
networks:
- mcp-internal
- mcp-public
depends_on:
- time
- fetch
- fs
- github
- postgres-mcp
logging: *logging
restart: unless-stopped
deploy:
resources:
limits:
cpus: '0.5'
memory: 256M
# Supporting services
postgres-db:
image: postgres:14-alpine
volumes:
- postgres-data:/var/lib/postgresql/data
environment:
- POSTGRES_USER=mcpuser
- POSTGRES_PASSWORD=${DATABASE_PASSWORD}
- POSTGRES_DB=mcpdb
networks:
- db-network
restart: unless-stopped
logging: *logging
deploy:
resources:
limits:
cpus: '1.0'
memory: 1G
healthcheck:
test: ["CMD", "pg_isready", "-U", "mcpuser"]
interval: 30s
timeout: 5s
retries: 3
# Monitoring
prometheus:
image: prom/prometheus:latest
volumes:
- ./prometheus:/etc/prometheus
- prometheus-data:/prometheus
command:
- '--config.file=/etc/prometheus/prometheus.yml'
- '--storage.tsdb.path=/prometheus'
networks:
- monitoring
- mcp-internal
restart: unless-stopped
logging: *logging
deploy:
resources:
limits:
cpus: '0.5'
memory: 512M
grafana:
image: grafana/grafana:latest
volumes:
- ./grafana:/etc/grafana/provisioning
- grafana-data:/var/lib/grafana
ports:
- "3000:3000"
networks:
- monitoring
environment:
- GF_SECURITY_ADMIN_PASSWORD=${GRAFANA_ADMIN_PASSWORD:-admin}
restart: unless-stopped
logging: *logging
deploy:
resources:
limits:
cpus: '0.5'
memory: 512M
networks:
mcp-internal:
internal: true
mcp-external:
internal: false
mcp-public:
internal: false
db-network:
internal: true
monitoring:
internal: true
volumes:
postgres-data:
prometheus-data:
grafana-data:
Step 3: Configuring the NGINX Gateway
Create the NGINX configuration files that will serve as a gateway to your MCP servers:
mkdir -p nginx/conf.d
Create nginx/nginx.conf
:
user nginx;
worker_processes auto;
error_log /var/log/nginx/error.log notice;
pid /var/run/nginx.pid;
events {
worker_connections 1024;
}
http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';
access_log /var/log/nginx/access.log main;
sendfile on;
#tcp_nopush on;
keepalive_timeout 65;
#gzip on;
include /etc/nginx/conf.d/*.conf;
}
Create nginx/conf.d/default.conf
:
server {
listen 80;
server_name localhost;
# Authentication for MCP access
auth_basic "MCP Server Access";
auth_basic_user_file /etc/nginx/.htpasswd;
# Time MCP server
location /time/ {
proxy_pass http://time:8080/;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
# Fetch MCP server
location /fetch/ {
proxy_pass http://fetch:8080/;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
# Filesystem MCP server
location /fs/ {
proxy_pass http://fs:8080/;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
# GitHub MCP server
location /github/ {
proxy_pass http://github:8080/;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
# PostgreSQL MCP server
location /postgres/ {
proxy_pass http://postgres-mcp:8080/;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
# Health check endpoint (no auth required)
location = /health {
auth_basic off;
return 200 '{"status":"healthy","timestamp":"$time_iso8601"}';
default_type application/json;
}
}
Create a password file for basic authentication:
docker run --rm -it httpd:alpine htpasswd -bn mcp your_secure_password > nginx/.htpasswd
Step 4: Setting Up Monitoring
Create Prometheus configuration:
mkdir -p prometheus
Create prometheus/prometheus.yml
:
global:
scrape_interval: 15s
evaluation_interval: 15s
scrape_configs:
- job_name: 'prometheus'
static_configs:
- targets: ['localhost:9090']
- job_name: 'mcp-services'
metrics_path: /metrics
static_configs:
- targets: ['time:8080', 'fetch:8080', 'fs:8080', 'github:8080', 'postgres-mcp:8080']
Set up Grafana dashboards by creating directories and configuration files:
mkdir -p grafana/dashboards grafana/datasources
Create grafana/datasources/prometheus.yml
:
apiVersion: 1
datasources:
- name: Prometheus
type: prometheus
access: proxy
url: http://prometheus:9090
isDefault: true
Step 5: Deploying Your Production Environment
Now that your configuration is ready, deploy the stack:
docker compose up -d
Verify that all services are running:
docker compose ps
Check the logs for any issues:
docker compose logs
Step 6: Testing Your Production Deployment
Test the health endpoint to ensure your gateway is working:
curl http://localhost:8080/health
Test authentication:
curl -u mcp:your_secure_password http://localhost:8080/time/.well-known/mcp
Step 7: Configuring Gordon AI to Use Your Production MCP Server
Now you need to create a configuration that tells Gordon AI to use your production MCP servers. Create a gordon-mcp.yml
file in your project directory:
services:
production-mcp-gateway:
image: curlimages/curl
command: |
-s -X GET -f
-u mcp:your_secure_password
http://your-server-address:8080/time/.well-known/mcp
labels:
mcp.base-url: http://your-server-address:8080/time/
mcp.auth: Basic bWNwOnlvdXJfc2VjdXJlX3Bhc3N3b3Jk # Base64 encoded mcp:your_secure_password
production-mcp-fs:
image: curlimages/curl
command: |
-s -X GET -f
-u mcp:your_secure_password
http://your-server-address:8080/fs/.well-known/mcp
labels:
mcp.base-url: http://your-server-address:8080/fs/
mcp.auth: Basic bWNwOnlvdXJfc2VjdXJlX3Bhc3N3b3Jk # Base64 encoded mcp:your_secure_password
production-mcp-github:
image: curlimages/curl
command: |
-s -X GET -f
-u mcp:your_secure_password
http://your-server-address:8080/github/.well-known/mcp
labels:
mcp.base-url: http://your-server-address:8080/github/
mcp.auth: Basic bWNwOnlvdXJfc2VjdXJlX3Bhc3N3b3Jk # Base64 encoded mcp:your_secure_password
Replace your-server-address
with the actual address of your server. The Base64 encoded auth string is the base64 encoding of mcp:your_secure_password
.
Step 8: Load Testing and Scaling
To ensure your production deployment can handle real-world load, perform load testing:
- Install a load testing tool like
hey
:
# For macOS
brew install hey
# For Linux
go install github.com/rakyll/hey@latest
- Run a basic load test against your MCP server:
hey -n 1000 -c 50 -H "Authorization: Basic bWNwOnlvdXJfc2VjdXJlX3Bhc3N3b3Jk" http://your-server-address:8080/time/.well-known/mcp
- Based on the results, you may need to scale your services horizontally. Update your Docker Compose file to include replica settings:
services:
time:
deploy:
mode: replicated
replicas: 3
resources:
limits:
cpus: '0.25'
memory: 256M
Step 9: Implementing Security Best Practices
To ensure your production MCP servers are secure, implement these additional security measures:
Add TLS/SSL
Update your NGINX configuration to use HTTPS:
- Generate a self-signed certificate or obtain a real one:
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout nginx/ssl/private.key -out nginx/ssl/certificate.crt
- Update the NGINX configuration in
nginx/conf.d/default.conf
to include SSL:
server {
listen 80;
server_name your-server-address;
return 301 https://$host$request_uri;
}
server {
listen 443 ssl;
server_name your-server-address;
ssl_certificate /etc/nginx/ssl/certificate.crt;
ssl_certificate_key /etc/nginx/ssl/private.key;
ssl_protocols TLSv1.2 TLSv1.3;
ssl_ciphers HIGH:!aNULL:!MD5;
# Rest of your configuration...
}
Implement Rate Limiting
Add rate limiting to your NGINX configuration to prevent abuse:
http {
# Rate limiting settings
limit_req_zone $binary_remote_addr zone=mcp_limit:10m rate=10r/s;
server {
# Apply rate limiting to MCP endpoints
location ~ ^/(time|fetch|fs|github|postgres)/ {
limit_req zone=mcp_limit burst=20 nodelay;
# Rest of your proxy configuration...
}
}
}
Regular Security Audits
Create a script to regularly audit your deployment for security issues:
cat > security-audit.sh << 'EOF'
#!/bin/bash
echo "=== MCP Security Audit $(date) ==="
# Check for outdated images
echo "\nChecking for outdated images..."
docker compose images
# Check container security with Docker Bench for Security
echo "\nRunning Docker security scan..."
docker run --rm -it \
--net host \
--pid host \
--userns host \
--cap-add audit_control \
-v /var/lib:/var/lib \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /usr/lib/systemd:/usr/lib/systemd \
-v /etc:/etc \
docker/docker-bench-security
# Check exposed ports
echo "\nChecking exposed ports..."
ss -tulpn | grep LISTEN
# Check for failed login attempts
echo "\nChecking for failed login attempts..."
grep "Failed password" /var/log/auth.log | tail -10
echo "\n=== Audit Complete ==="
EOF
chmod +x security-audit.sh
Step 10: Maintaining and Updating Your Deployment
Create a script to simplify updating your MCP servers:
cat > update-mcp-servers.sh << 'EOF'
#!/bin/bash
echo "=== Updating MCP Servers $(date) ==="
# Pull the latest images
echo "\nPulling latest images..."
docker compose pull
# Backup configuration
echo "\nBacking up configuration..."
mkdir -p backups/$(date +%Y-%m-%d)
cp docker-compose.yml backups/$(date +%Y-%m-%d)/
cp .env backups/$(date +%Y-%m-%d)/
cp -r nginx backups/$(date +%Y-%m-%d)/
# Restart services with new images
echo "\nRestarting services..."
docker compose down --remove-orphans
docker compose up -d
# Verify all services are running
echo "\nVerifying services..."
docker compose ps
# Test health endpoint
echo "\nTesting health endpoint..."
curl -s http://localhost:8080/health
echo "\n=== Update Complete ==="
EOF
chmod +x update-mcp-servers.sh
Implementing a Backup Strategy
Add a backup strategy for your MCP server data:
cat > backup-mcp-data.sh << 'EOF'
#!/bin/bash
BACKUP_DIR="/path/to/backup/location"
TIMESTAMP=$(date +%Y-%m-%d-%H%M)
# Create backup directory
mkdir -p "$BACKUP_DIR/$TIMESTAMP"
# Backup PostgreSQL database
echo "Backing up PostgreSQL database..."
docker compose exec postgres-db pg_dump -U mcpuser mcpdb > "$BACKUP_DIR/$TIMESTAMP/mcpdb.sql"
# Backup configuration files
echo "Backing up configuration files..."
cp -r .env docker-compose.yml nginx prometheus grafana "$BACKUP_DIR/$TIMESTAMP/"
# Backup filesystem data
echo "Backing up filesystem data..."
tar -czf "$BACKUP_DIR/$TIMESTAMP/data.tar.gz" data output
# Set proper permissions
chmod -R 600 "$BACKUP_DIR/$TIMESTAMP"
# Cleanup old backups (keep last 7 days)
find "$BACKUP_DIR" -maxdepth 1 -type d -mtime +7 -exec rm -rf {} \;
echo "Backup completed: $BACKUP_DIR/$TIMESTAMP"
EOF
chmod +x backup-mcp-data.sh
Conclusion
Congratulations! You’ve successfully deployed a production-ready Docker MCP server environment with:
- Security: Authentication, network isolation, and secure secret management
- Monitoring: Prometheus and Grafana integration for observability
- High Availability: Health checks and automatic restarts
- Performance: Resource constraints and scaling options
- Maintainability: Update and backup scripts
This deployment provides a robust foundation for using Docker MCP servers in real-world enterprise environments. The Gateway pattern allows you to add new MCP servers without changing client configurations, while the security measures ensure that only authorized clients can access your MCP servers.
Next Steps
- Learn about Kubernetes Deployment for MCP Servers
- MCP Server Administration Guide
- Integrating with CI/CD Pipelines
Troubleshooting
- If your NGINX gateway isn’t routing requests properly, check the network configuration
- For authentication issues, verify your Base64 encoded credentials
- If MCP servers aren’t starting, check your Docker logs and resource constraints
- For monitoring issues, ensure Prometheus can reach all your MCP servers